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Abstract

It is established that the unilateral Hele-Shaw problem for flows in a channel when there is bulk anisotropy and Saffman–Taylor
boundary conditions on the free boundary can be reduced to the isotropic case using a linear non-orthogonal coordinate transfor-
mation. Correspondingly, any exact solution of the Hele-Shaw problem for an isotropic medium generates a set of solutions for
an anisotropic medium for arbitrary orientation of the principal axes of the permeability tensor with respect to the direction of the
channel axis.
© 2007 Elsevier Ltd. All rights reserved.

References in the literature on anisotropic Hele-Shaw flows usually related to the case of a regular array of grooves
etched on one of the glass plates forming a cell. The motion of the liquid in this case is described by the same Laplace
equation, i.e. there is actually no bulk anisotropy of the medium, and only the form of the capillary-type condition at
the interface changes, so that there is a certain analogy between the fingering processes in such Hele-Shaw flows and
dendrite growth processes.1 Nevertheless, in the production of certain composite materials, for example, in the vacuum
infusion of a resin into closed forms, capillary effects at the interface are unimportant, but in return the bulk anisotropy
of the medium is extremely important.2

For the case of an isotropic medium, many accurate stationary and non-stationary solutions of the Hele-Shaw
problem with dynamic Saffman–Taylor boundary conditions on the free boundary are known (see, for example, Refs.
3–5), including of fairly general form.6 At the same time, for the case of an anisotropic medium there is obviously
a unique exact solution of the problem with a free boundary of the Hele-Shaw problem type – the solution of the
stationary problem of the influx of ground waters to a drain in a lock in an anisotropic ground.7 The construction of
this solution is based on the use of the well-known linear non-orthogonal coordinate transformation.8,9 The purpose
of the present paper is to investigate what the use of this transformation contributes to the Hele-Shaw problem with a
free boundary in the general non-stationary formulation.

1. Formulation of the problem

As is well known,7,9 a Hele-Shaw cell models two-dimensional flows of a viscous incompressible fluid in porous
media, provided they follow Darcy’s law. For anisotropic uniform media the permeability is a tensor constant K. We will
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Fig. 1.

consider a Hele-Shaw cell of the channel type (Fig. 1). We will connect the origin of a Cartesian system of coordinates
x, y with some fixed point of the channel wall, and we will direct axes along the principal axes of anisotropy of the
permeability tensor. Then

The flow rate v satisfies the incompressibility condition �v = 0, and its components are related to the pressure by
Darcy’s law

(1.1)

Here � is the viscosity and p(x, y, t) is the pressure of the fluid at the point x, y at the instant of time t.
For flows in Hele-Shaw cells of the channel type it is natural to choose the width of the channel of the characteristic

length l*, and the fluid velocity at infinity as the characteristic velocity v∗, in which case t∗ = l∗/v∗ is the characteristic
time. An analysis of the dimensions of Eq. (1.1) suggests the choice of the characteristic pressure: p∗ = l∗v∗�/kxx,
and also gives the dimensionless complex k = √

kyy/kxx, characterizing the anisotropy of the medium.
Referring the dimensional variables x, y, t, p and v to the characteristic quantities we change to dimensionless

variables, keeping the same notation for them as for the dimensional variables. Thus, Eq. (1.1) give the components of
the dimensionless velocity v

(1.2)

and we can write the dimensionless formulation of the problem.
The fluid occupies the region �(t) with boundary ∂�(t) = AB ∪ BC ∪ CA. The part BC �(t) is the interface, its

configuration is unknown and is to be determined in the course of solving the problem. The parts AB ⊂ AA′, CA ⊂ AA′′
are parts of the channel walls, the direction of which, generally speaking, does not coincide with any of the directions
of the principal axes of anisotropy x, y. We will denote the angle between the direction of the x axis and the direction
of the walls by �∞ and we will assume that they belong to the first quadrant �∞ ∈ [0, �/2) (this can always be achieved
by an appropriate choice of the coordinate axes). We have

(1.3)

We will agree that �0 = (cos�∞, sin�∞) is the unit vector of the direction of the channel axis along the path of the fluid
motion, while n0 = (−sin�∞, cos�∞) is the unit vector of the normal to this axis.
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The incompressibility condition, taking expressions (1.2) into account, gives the equation for the function p(x, y, t)

(1.4)

The impermeability condition v · n0 = 0 is satisfied on the channel walls; it can be written, using expressions (1.2),
in the form

(1.5)

At infinity, i.e. at the point A, the condition v∞ = �0 must be satisfied or, like the previous case,

(1.6)

Two conditions are satisfied on the free boundary �(t).3 The first is a dynamic condition (the Saffman–Taylor
condition)

(1.7)

The second is a kinematic condition, which most often of all is written in the form

Here un is the normal velocity of displacement of the boundary, � is the angle of inclination to the horizontal of the
tangent to the boundary �(t) (the tangent is shown by the dashed line in Fig. 1), while on the right-hand side of the
relation there is the projection of the fluid velocity v onto the normal to the boundary n = (sin�, −cos�). However,
the quantities � and un are difficult to formalize in terms of the function p(x, y, t), and hence in this case it is more
convenient to use another form of writing this condition4

which expresses the fact that the total derivative with respect to time of the pressure function on the free boundary is
equal to zero. Note that, in the theory of Stefan’s problem, which is related to the Hele-Shaw problem (the temperature
occurs in it instead of the pressure), this is one of the forms of writing Stefan’s condition.10,11 Expressing it using the
same formulae (1.2) in terms of the function p(x, y, t), we obtain the kinematic condition on the free boundary

(1.8)

Among other things, this form of notation emphasises the non-linear form of the free-boundary problem.
To complete the formulation of the problem it is necessary to specify the configuration of the region �(t) at the

initial instant of time t = 0

(1.9)

The system of Eqs. (1.3)–(1.9) is a dimensionless formulation of the Hele-Shaw boundary-value problem with a
Saffman–Taylor type dynamic condition on the non-stationary free boundary for flow in a channel when there is both
anisotropy, formalized in terms of a single unknown function p(x, y, t). The special case k 1 corresponds to a uniform
isotropic medium.

An analysis of the above problem enables us to establish some qualitative properties of its possible solutions.
Knowing the components of the vectors v∞ and −�p∞ we can obtain the angle between them (see Fig. 1)

(1.10)

An estimate of the range of variation of the angle was made taking into account the fact that �∞ ∈ [0, �/2).
We will now present the simplest case of a uniform (piston) displacement with a fluid velocity everywhere equal to

v = �0. Then, over the whole flow region and, in particular, on the channel walls the angle between the vectors −�p and
v will be equal to �∞. Further, we will take into account the fact that the free boundary corresponds to the condition
p = 0 and, consequently, is orthogonal to the vector �p at each point of it. Then, at the ends B and C the angle between
the free boundary and the normal n0 to the walls will also be equal to �∞. Moreover, in view of the uniformity of the
flow, these angles are independent of the value of the fluid velocity.
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Transferring to the case of essentially two-dimensional flow, we note that at any internal point of the region �(t) the
velocity vector v, generally speaking, differs both in value and direction from the vector v∞. At the same time, on the
walls the vectors v and v∞ are always codirected, and locally close to the walls the flow is always uniform (the value
of the velocity, naturally, is necessarily equal to unity), and hence the conclusion that on the channel walls the angle
between the vectors −�p and v is equal to �∞ holds, which could also be formally proved using expressions (1.6) and
(1.10). The conclusion that, at the ends B and C of the free boundary �(t), the angle formed by the free boundary and
the normal n0 to the walls is also equal to �∞ (see Fig. 1) similarly holds.

2. Transfer to new coordinates

Consider the transformation of the coordinates x, y, t into coordinates X, Y, T

(2.1)

where C1 and C2 are so-far undefined positive constants. This is essentially a simple generalization of a linear non-
orthogonal transformation of the coordinates,7–9 which converts Eq. (1.4) into Laplace equation. In particular, it converts
representation (1.3) of the channel walls AA′ ∪ AA′′ into the representation

(2.2)

i.e. the rectilinear channel walls in the new coordinates X, Y convert into rectilinear walls inclined to the horizontal at
an angle �∞.

Further, we will define a new function P(X, Y, T)

(2.3)

where C3 is a so-far undefined positive constant. We will analyse how the Hele-Shaw problem (1.3)–(1.9), formulated
in Section 1, is altered on changing to the new coordinates X, Y, T and the new function P(X, Y, T).

In the X, Y plane the region �(T) will be limited by the channel walls (2.2) and the free boundary BC �(T). The
function P(X, Y, T) will satisfy the equation

(2.4)

the boundary conditions on the channel walls

(2.5)

the condition at infinity

(2.6)

the two conditions on the free boundary

(2.7)

and the initial condition

(2.8)

In the formulation of the problem in terms of the function P(X, Y, T), Eq. (2.4), boundary condition (2.5), the
first condition of (2.7) and also the initial condition (2.8) correspond to the isotropic case of the formulation of the
Hele-Shaw problem in Section 1. It can be shown that, by choosing the constants C1, C2 and C3 in a special way, the
remaining boundary conditions, namely, condition (2.6), the second condition of (2.7) and also representation (2.2) of
the channel walls, can also be made to correspond to the isotropic case.
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In fact, in formula (2.2) the constant C1 obviously corresponds to the width of the channel in the new system of
coordinates (X, Y). One can obtain unit width of the channel and, of course, a complete analogy between representations
(2.2) and (1.3) of the channel walls, by choosing as C1 the quantity

(2.9)

Now, using relation (2.9) successively and the notation �∞ in (2.2), it can be shown that the following expression
holds

Substituting it into boundary condition (2.6), we obtain the simpler form of the condition

It is obvious that complete correspondence between the conditions at infinity and the isotropic case can be achieved
by choosing

(2.10)

Finally, we can obtain exact correspondence between the second boundary condition on the free boundary (2.7) and
the isotropic case by choosing C2 in the form

(2.11)

3. Discussion of the results and an example

As a result of the transformation of coordinates (2.1) and function (2.3) with the appropriate choice (2.9)–(2.11) of
the constants C1, C2 and C3, the Hele-Shaw problem (1.3)–(1.9) for the fluid flow in a channel when there is anisotropy
can be reduced to the analogous problem for an isotropic medium. Consequently, any exact solution of the Hele-Shaw
problem for flows in an isotropic cell generates a set of solutions for flows in an anisotropic cell for any orientation of
the principal axes of the permeability tensor with respect to the direction of the channel axis. The result can be extended
in an obvious way to stationary solutions, and also to Hele-Shaw flow in cells with a circular geometry (the problem
of an “inflating bubble”), since in this case there are no impenetrable channel walls and one can simply dispense with
the need to keep track of the boundary conditions on them.

As an example we will take the exact solution describing the formation of a single symmetrical finger in a Hele-
Shaw channel.4 We will confine ourselves to the simplest case when, over a long period of time, the well-known
Saffman–Taylor finger is formed with a width equal to the half-width of the channel. The complex flow potential
W = −P + i� as a function of the point Z = X + iY of the complex physical plane at the instant of time T is implicitly
defined by the equation4

(3.1)

with the condition −1/2 ≤ � ≤ 1/2, −∞ < P ≤ 0. Here � is an arbitrary positive constant, C0 is an unimportant complex
constant (its choice fixes the origin of coordinates), and �∞ is the angle between the channel axis and the X axis, the
value of which will be determined later depending on the specified parameters of the anisotropic case. In particular,
Eq. (3.1) also implicitly defines the pressure function

If we put P = 0, Eq. (3.1) becomes a parametric equation of the interface
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Fig. 2.

Fig. 3.

Correspondingly, we can follow the evolution of the interface. The choice of a definite value of � obviously fixes the
initial configuration of the free boundary �(0). We choose � = 0.01. Then the first 5 steps of �T = 0.2 in time T give
the evolution pattern of the interface, shown in Fig. 2.

Further, we take a Hele-Shaw channel having bulk anisotropy. To fix our ideas, we will specify the angle �∞ between
the channel axis and one of the principal anisotropy axes of the permeability tensor (it is already the x axis): �∞ = �/4.
Suppose kyy = kxx/4, i.e. the anisotropy parameter k = 1/2. Then, by the formulae in Section 2, we obtain

whence we obtain the transition formulae

As a result, the exact solution for an isotropic Hele-Shaw channel (3.1) produces the exact solution for an anisotropic
channel. In this case the evolution of the interface for an anisotropic Hele-Shaw channel can be represented by the
parametric equation

Hence, the first 5 steps of �t = 0.16 in time t give the evolution pattern of the interface shown in Fig. 3.
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